From the History of Science
The Millikan experiment from the point of view of mathematical statistics
Barabasheva Yu. M.,
Deviatkova G. N.,
Tutubalin V. N.,
Uger E. G.
Famous experiments by Robert A. Millikan to determine the electron charge are oftenused as an illustration of the method of confidence intervals in the statistical analysisof experimental data. Yet the lecturers typically pay attention to the already processed data on the measurement of 58 drops, whereas each of these values relies on theresults of several successive measurements. For 16 drops, Millikan provided the moredetailed primary data, which are analyzed here with the methods of mathematical statistics. It turns out that Millikan’s measurements were not statistically stable, whichmakes the method of confidence intervals inapplicable. However, the mean value of the electron charge, calculated on the basis of Millikan’s primary data, is very close to the modern value, and the narrow confidence interval includes the latter
Key words: confidence interval, empirical distribution function, lectron charge, normal scale, observational error theory, statistical stability, the Kolmogorov – Smirnov test, the Millikan experiment
eLIBRARY.RU: http://elibrary.ru/item.asp?id=26275218
REFERENCES →
Crease, R. (2014) Prizma i maiatnik. Desiat’ samykh krasivykh eksperimentov v istorii
nauki [The Prism and the Pendulum: The Ten Most Beautiful Experiments in Science].
M.: AST.
Ebert, G. (1963) Kratkii spravochnik po fizike. [Short Guide on Physics]. M.:
Fizmatgiz.
Fairbank, W. M. Jr. and Franklin, A. (1982) Did Millikan Observe Fractional Charges on Oil
Drops? American Journal of Physics, Vol. 50, No. 5, pp. 394–397.
Franklin A. (1981) Millikan’s Published and Unpublished Data on Oil Drops, Historical
Studies in the Physical Sciences, Vol. 11, No. 2, pp. 185–201.
Franklin, A. (1997) Millikan Oil-Drop Experiments, The Chemical Educator, Vol. 2,
No. 1, pp. 1–14.
Goodstein, D. (2000) In Defense of Robert Andrews Millikan, Engineering &
Science, No. 4, pp. 30–38.
Holton, G. (1978) The Scientific Imagination: Case Studies. Cambridge: Cambridge
University Press.
Kadoya, K., Matsunaga, N. and Nagashima, A. (1985) Viscosity and Thermal Conductivity
of Dry Air in the Gaseous Phase, Journal of Physical and Chemical Reference
Data, vol.1 4, No. 4, pp. 947–970.
Linnik, Iu.V. (1962) Metod naimen’shikh kvadratov i osnovy matematiko-statisticheskoi
obrabotki nabliudenii. 2-e izd. [The Method of Least Squares and the Foundations of
Mathematical and Statistical Processing of Observations]. Moskva: Fizmatgiz.
Meshalkin, L. D. (1963) Sbornik zadach po teorii veroiatnostei [The Collection of
Problems in the Probability Theory]. Moskva: Izdatel’stvo MGU.
Millikan, R. A. (1911) The Isolation of an Ion, a Precision Measurement of Its Charge,
and the Correction of Stokes’s Law, Physical Review, Vol. 32, No. 4, pp. 349–397.
Millikan, R. A. (1913) On the Elementary Electric Charge and the Avogadro Constant,
Physical Review, Vol. 2, No. 2, pp. 109–143.
Montgomery, R. B. (1947) Viscosity and Thermal Conductivity of Air and Diffusivity of
Water Vapour in Air, Journal of Meteorology , Vol. 4, No. 6, pp. 193–196.
Uilson, M. (1975) Amerikanskie uchenye i izobretateli [American Scientists and
Inventors]. Moskva: Znanie.
Recommended bibliographic description
Barabasheva Yu. M.,
Deviatkova G. N.,
Tutubalin V. N.,
Uger E. G., The Millikan experiment from the point of view of mathematical statistics,
Voprosy Istorii Estestvoznaniia i Tekhniki [Studies in History of Science and Technology],
2016, vol. 37, no. 2, p. 233-250
© Studies in the History of Science and Technology: Quarterly scientific journal of the Russian Academy of Sciences (2015)
ISSN 0205-9606. Индекс 70143